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The Landau’s theory of superfluidity of the liquid helium–II at low temperatures is discussed. The 
Landau’s condition of the superfluidity is also discussed, in particular, in the case when the effective 
phase velocity Cph of the bulk elementary excitations (BEEs) of the liquid becomes zero in both the 
maxon maximum and the roton minimum. In each energy zones (the phonon, R– – roton and R+ – roton 
branches) there are corresponding two modes of dispersive waves of different types (Cph > Cg and Cph < 
Cg, where Cg is the group velocity of the BEEs), and one corresponding non-dispersive Zakharenko wave. 
The dispersion relations, for both the free 4He-atom velocities Vph

at and Vg
at, and the velocities Cph and Cg 

of the BEEs in the liquid, are drawn for comparison and analyzed. Also, the BEEs’ effective masses are 
plotted in dependence on the wavenumber k. 
The present paper is written in memory of Acad. L. D. Landau. 

1 Introduction 

Up to the present time it is well-known that the 
liquid 4He-helium at low temperatures below the λ – 
point, Tλ = 2.19 K, gets peculiar properties, the most 
important of which is superfluidity, which was 
discovered in 1932 by P.L. Kapitza [1]. Superfluidity is 
the lack of viscosity during the flow of the liquid 
helium through slits or thin capillaries. Moreover, the 
liquid helium exists in liquid state down to absolute 
zero temperature. These properties of the liquid helium 
can not be explained by the classical theory and are 
connected with quantum phenomena; therefore, it is a 
quantum liquid. 

In 1941 L.D. Landau [2] has shown that the 
superfluidity of the liquid helium at absolute zero is a 
consequence of the properties of the energy spectra of 
elementary excitations [3,4,5] (phonons, rotons). He 
has considered the liquid helium at absolute zero in its 
normal, unexcited state, which is flowing through a 
capillary at a constant flow velocity V. He has treated 
phonons and rotons separately, in order to evaluate the 
liquid flow velocity V. He has found that the velocity 
V must be greater than the phonon velocity C0 in the 
phonon branch. Namely, he has found C0 ~ 250 ms–1, 
more recent value of which is ~ 238 ms–1. Also, the 
velocity V must be greater than the roton velocity in 
the positive-roton branch. He has concluded that 
neither phonons nor rotons can be excited, if the flow 
velocity V of the liquid is not too large, and therefore, 
the liquid flow does not slow down. Therefore, the 
liquid helium-II discloses the superfluidity 
phenomenon. The theoretically evaluated minimum 
velocity C01 near the roton minimum of the liquid 
helium-II can be found in Ref. [5], and the found value 
of C01 is ~ 60 ms–1. There was also discussed that this 
evaluated value of the roton velocity C01 is several 

orders greater than the one which is experimentally 
observed.  

In the 1980’s W.G. Stirling [6,7] has investigated 
the energy spectra of the bulk elementary excitations in 
the liquid helium-II by new high-resolution neutron 
scattering technique. These measurements have clearly 
shown the so-called “phonon-backflow”. He has 
introduced calculated values of the phase velocities of 
the elementary excitations of the liquid helium using 
the measured values of the wavenumbers k and the 
excitations’ energies. Unfortunately, not many points 
were shown for excitation’s wavenumbers k both 
below 0.1Å–1 and above 0.8Å–1. Moreover, “Not 
relevant” was written for the excitation’s phase 
velocities for the wavenumbers k greater than 1.13Å–1, 
and this is true. After it, A.C. Forbes and A.F.G. Wyatt 
[8] have drawn dependence of absolute value of the 
group velocity Cg of the BEEs on the wavenumber k, 
probably, using the measured data of Refs. [6,7]. 

In this paper, the dispersion relation of both the 
group velocity Cg and the effective phase velocity Cph 
of the bulk elementary excitations are shown for 
comparison and analysis, as well as dispersion relation 
for a free 4He-atom that can be useful to help to better 
understand some quantum effects, such as the 
“quantum evaporation” [9] of the helium atoms by the 
corresponding BEEs from the liquid helium surface up 
to vacuum, the “quantum condensation” of the atoms 
on the liquid surface, reflection of the corresponding 
BEEs back to the bulk liquid helium. It could help to 
better understand the recent works concerning the so-
called roton-backflow [10,11]. 
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2 Landau’s theory 

Let us treat the flow of the liquid helium-II 
through a capillary at a constant velocity V for 
simplicity as it was done by L D Landau [2], because 
in this coordinate system the liquid helium–II is at rest, 
but the capillary walls move with a velocity – V. The 
liquid helium–II must start to move owing to the 
presence of viscosity. It is obvious that the motion with 
creation of the elementary excitations of the liquid 
must begin in boundary layers of the liquid to the 
walls. 

If an elementary excitation is excited in the liquid, 
the liquid energy Eliq is equal to the excitation energy 
Eext. The energy of the normal state is equal to zero. 
Therefore, the liquid momentum Pliq is the excitation 
momentum Pext. It is always treated in the coordinate 
system in which the liquid was initially at rest. And it 
is possible now to write that Eliq = Eext and Pliq = Pext, 
where the excitation energy is usually taken as Eext = 
Cext(Pext)*Pext and Cext can be the group velocity of an 
elementary excitation (phonon, roton). The velocity 
Cext can be written as Cext = C0*ζ(Pext), where ζ is a 
polynomial and the velocity C0 is taken, in order to 
have good approximation, which can be different for 
each branch of the elementary excitations spectra. 

In the coordinate system, in which now the 
capillary is at rest, it is possible to write for the energy 
E and the momentum P: 

E = Eext + PliqV +MV 2/ 2   and   P = Pliq + MV,
  (1) 

where M is the mass of the liquid helium and MV2/2 is 
the initial kinetic energy of the flowing liquid helium. 
Also, the energy can be written as 

E = CextPext + PextV + MV 2/ 2,  
 (2) 

where Pext = µ*Cext and µ*, Cext are the effective mass 
and the velocity of an elementary excitation of the 
liquid helium, respectively. The term (CextPext + PextV) 
is the change of the energy due to an elementary 
excitation. The Landau’s suggestion is that this energy 
change must be negative, because the energy of the 
flowing liquid must decrease: 

CextPext + PextV < 0.       (3) 
Now it is possible to analyze the expression (3) 

and to conclude similar to what was done by L.D.  
Landau: according to Eq. (3), the absolute value of the 
velocity V must be greater than the one of the velocity 
Cext, in order to fulfill the condition (3): 

V > Cext.    (4) 
And Landau’s conclusion is: at smaller velocities the 
interaction with the walls of the capillary cannot give 
rise to creation of an elementary excitation. The 
problem is to find a minimal value of the velocity Cext. 

If the velocity of flow in the liquid helium-II is greater 
than the value of the C0 ~ 250 ms–1, corresponding 
elementary excitations can be excited in the liquid. 
When the flow of the liquid does not slow down, the 
liquid helium–II discloses the phenomenon of 
superfluidity. However, he has left aside the question: 
whether the superfluidity disappears at smaller 
velocities than the found value ~ 60 ms–1, according to 
Ref. [5]. Also, Landau has treated the effective mass of 
the bulk elementary excitations in calculations, which 
is not equal to the free 4He atom mass m4 and gives 
better correlation with experiments: µ = αm4, where α 
is a suitable factor. In Landau’s theory, the superfluid 
helium-II consists of both normal and superfluid 
components, treating superfluid motions as potential 
ones. 

3 Dispersions of microscopic and 
“macroscopic” free quasi-particles 

The condition (4) could be fulfilled for each bulk 
elementary excitation, because each elementary 
excitation possesses the effective phase velocity Cph 
and the effective mass µ*, as well as the group velocity 
Cg. Both the Cph and the Cg can become zero for some 
special cases. This occurs both at the maxon-maximum 
and at the roton-minimum in the energy spectra of bulk 
elementary excitations in the liquid. The effective 
phase velocity Cph becomes equal to zero that will be 
shown below. The group velocity Cg becomes equal to 
zero that was also shown in Ref. [8]. The energy 
spectra of possible free quasi-particles are shown in 
figure 1. On the other hand, the BEEs energy spectra of 
the liquid helium-II are shown in figure 2. Absolute 
value of the effective phase velocity Cph can be written 
near the maxon-maximum as: 
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where µ* is the effective mass of a bulk elementary 
excitation, which depends on the wavenumber k, µ* = 
µ*(k – k∆m). The energy E∆m = 13.85K and the 
wavenumber k∆m = 1.125Å–1 are the energy and the 
wavenumber of the maxon-maximum, respectively. It 
is clearly seen in (5) that at k = k∆m the effective phase 
velocity Cph falls to zero. Absolute value of the Cph can 
be written near the roton-minimum as: 
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 (6) 
where the effective mass µ* of a bulk elementary 
excitation depends on the wavenumber k, µ* = µ*(k – 
k∆R). The energy E∆R = 8.61K and the wavenumber k∆R 
= 1.925Å–1 are the energy and the wavenumber of the 
roton-minimum, respectively. It is clearly seen that at k 
= k∆R the effective phase velocity Cph falls to zero, too. 
Therefore, the BEEs energy spectra of the liquid can be 
divided into three energy zones. The first energy zone 
is the phonon branch, the second is the R– – roton 
branch and the third is the R+ – roton branch of the bulk 
elementary excitations. 

Let’s discuss the dispersion relations of two 
possible free quasi-particles, which can be both 
microscopic (for example, atoms) and “macroscopic” 
ones. The “macroscopic” quasi-particle means that 
such quasi-particle behaves as a microscopic one, for 
example, its energy can be described as E = ± ħω. 
Figure 1a represents a free quasi-particle with positive 
kinetic energy, but figure 1b represents a free quasi-
particle with negative kinetic energy.  It is clearly seen 
that these two quasi-particles are not identical. The first 
quasi-particle in figure 1a has dispersion Vg > Vph for 
positive wavenumbers, while the second quasi-particle 
in figure 1b has the other dispersion Vg < Vph for 
positive wavenumbers. On the other hand, if the first 
quasi-particle has dispersion Vg < Vph for negative 
wavenumbers, the second has the other possible 
dispersion Vg > Vph for negative wavenumbers. 
However, both free quasi-particles have the dispersion 
Vg = 2Vph to be independently on the sign of the 
wavenumber k. 

The dependence [13] of the group velocity Vg on 
the phase one Vph can be written as follows: 
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where Vph = – ω/(ik), but Vg = – dω/d(ik) with 
imaginary unity i = (–1)1/2. Therefore, for negative 
values in (7) there is dispersion Vg < Vph for free quasi-
particles. Also, classical Love waves in the layered 
system, consisting of isotropic layer on isotropic 
substrate, possess such dispersion. 

For a free quasi-particle with negative energy there 
is (k ←→ ik) that allows observation of such unique 
free quasi-particle in real space with real wavenumbers 
k that can be shown by the following equation:  
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The well-known dependence of negative energy on the 
group velocity can be shown as follows:  
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   (9) 
where both the signs “±i” and “±” relate to the 
wavenumber k, but not to the frequency ω, in order to 
keep only real energies. It is thought that + ω and – ω 
are identical. However, this is not completely so. 
Negative energies could relate to latent energies. It is 
well-known that for quasi-particles with small both 
energies and momenta there is Vg ~ Vph that represents 
the phonon definition. This occurs in figure 1 for k → 
0, but for the Bose-Einstein condensation (BEC) there 
is Vg = Vph = 0. Phonons are also called as sound 
waves. 

4 Dispersion relations 

Both the effective phase velocity Cph and the group 
velocity Cg of the bulk elementary excitations of the 
liquid helium are shown in figure 2 in dependence on 
the wavenumber k. The effective phase velocity Cph 
must become equal to zero that is seen from Eqs. (5) 
and (6), which describe behavior of the Cph around 
corresponding energy pits, both at the maxon 
maximum with k = k∆m = 1.125Å–1 and at the roton 
minimum with k = k∆R = 1.925Å–1. Also, at k = 0 the 
effective phase velocity Cph = C0 = 238 ms–1 
corresponds to the normal, unexcited state of the liquid. 
The necessity of treating the effective phase velocity 
Cph instead of the phase velocity Vph for the bulk 
elementary excitations is introduced, because usage of 
the Vph in this case is “not relevant” as it was noted by 
W.G. Stirling [6,7]. However, the experimental data of 
Refs. [6, 7] are good, in order to calculate the group 
velocity Cg. Around the energy pits (the maxon 
maximum and the roton minimum) the energy of 
corresponding bulk elementary excitation as a quasi-
particle can be approximated by the one for a free 
quasi-particle, E = ħ2k2 / 2µ*, where µ* is the effective 
mass. 

The group velocity Cg depends on the effective 
phase velocity (5) and (6) in each energy zone as: 

)(
)(

∆
∆ −

−+=
kkd

dC
kkCC ph

phg  

  (10) 
and therefore, at boundaries (both at the maxon-
maximum and at the roton-minimum) of the energy 
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zones k = k∆ and Cg = Cph = 0. According to the results 
obtained in Ref. [13] concerning the dependence of the 
group velocity on the phase velocity, which is true for 
(10) as well, there is the following: if the effective 
phase velocity Cph decreases, the group velocity must 
be less than the Cph, and if the effective phase velocity 
Cph increases, the group velocity must be greater than 
the phase one. Moreover, as it was shown in Ref. [13], 
once the effective phase velocity has maximum or 
minimum in dependence on the wavenumber k, at these 
points, the phase and group velocities are equal, and 
therefore, at these points it is dealt with the new type of 
non-dispersive Zakharenko waves [13]. By 
straightforward analyzing of the energy spectra of the 
liquid helium it is possible to find that each energy 
zone (the phonon, R– – roton and R+ – roton branches) 
has only one corresponding non-dispersive Zakharenko 
wave (the Stirling’s experimental data [6,7] give 
several non-dispersive waves with energy ~ 1K – 2K 
that is probably incorrect, because there are difficulties 
to measure in this energy region), and characteristics of 
which are listed in table 1. As it is seen in figure 2, the 
corresponding non-dispersive Zakharenko wave 
divides each energy zone into two energy sub-zones or 
two modes of dispersive waves with different 
dispersions (Cph > Cg or Cph < Cg). 

The energy spectrum of a free 4He-atom 
positioned in the coordinate beginning (at Ek

at(k = 0) = 
0, but not at Ek

at(k = 0) = Ebind = 7.15K [14,15,16]) is 
shown in figure 2 by dotted line in dependence on the 
wavenumber k. It was done by this way, because if 
there is Ek

at(k = 0) = Ebind, a “forbidden zone” will 
occur for the atom kinetic energy from k = 0 to k = kbind 
(the wavenumber k is the same that is assumed). It is 
possible to evaluate kbind from 

K15.72/ 4
22 == Bbindbind kmkE h . Hence, kbind can 

be 
1

2
4 09.1/15.72

−

Α≈×=
o

hBbind kmk , where 
kB =1.38*10–23 JK–1 is the Bolzmann constant and ћ = 
1.05459*10–34 Js is the Planck constant, and m4 = 
6.667*10–27 kg is the 4He-atom mass. The kinetic 
energy of a free 4He-atom can now be written as: 

4
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Therefore, the phase velocity of the helium atom is 
equal to 

42m
kV at

ph
h

=     (12) 

and the group velocity of the atom is 

4m
kV at

g
h

= .     (13) 

For the helium atom, the phase velocity and the 
group one are shown by two straight lines in figure 2 in 
dependence on the wavenumber k, beginning at k = 0. 
It is possible now to write that the helium atom 
represents dispersive waves with the constant 
relationship Vg

at = 2Vph
at that is seen from Eqs. (12) and 

(13). Comparison of the phase and group velocities of 
the helium atom with the ones of the bulk elementary 
excitations of the liquid helium, which is a quantum 
liquid, can throw light on the quantum effects such as 
both the “quantum evaporation” process and the 
“quantum condensation” one. 

Let us treat the phase velocity, that is used in 
Physical Acoustics, of a 4He-atom Vph

at, but not the 
atom group velocity Vg

at. The Vph
at crosses the effective 

phase velocity Cph of the bulk elementary excitations 
near the maxon-maximum (see the first energy zone in 
figure 2). It means that one type of oscillations can 
excite the other type of oscillations at that crossing 
point. This effect at crossing points of phase velocities 
is experimentally difficult-removable in Acoustics of 
solid layered systems, where for example, Love type 
waves with polarization perpendicular to the sagittal 
plane can excite dispersive Rayleigh type waves with 
polarization in the sagittal plane that was mentioned in 
Ref. [18]. This is applicable in the present case, too. 
Therefore, in the first energy zone, an energy leak can 
occur at the crossing point between the Vph

at of a free 
4He-atom and the Cph of the bulk elementary excitation 
(the high-energy phonon) with Cph = Vph

at ~ 75 ms–1 at 
the wavenumber k near kbind. Thus, these BEEs in the 
first energy zone can be readily excited by atomic 
beams consisting of 4He-atoms. In the second energy 
zone (the R– – roton branch), the straight line of the 
atom phase velocity Vph

at approaches the maximum 
absolute value of the effective phase velocity Cph, so 
the second non-dispersive Zakharenko wave can be 
created by a 4He-atom (see the energy zone 2 both in 
figure 2 and in table 1). In the third energy zone (the R+ 

– roton branch), the atom phase velocity Vph
at 

approaches the maximum value of the effective phase 
velocity, too, and therefore, the third non-dispersive 
Zakharenko wave can be readily excited by a 4He-atom 
(see the energy zone 3 both in figure 2 and in table 1).  

The energies of the helium atoms, which can 
create both the second non-dispersive Zakharenko 
waves and the third ones, are given in table 1, 
respectively. For example, in order to create the third 
non-dispersive Zakharenko wave with the energy ~ 
15.8K, one 4He-atom needs to reach its own kinetic 
energy ~ 35.6K, because an energy leak can exist 
between these two different types of oscillations. This 
atom energy is two times greater than the energy of the 
third non-dispersive Zakharenko wave that could show 
coupling between such two BEEs into pairs. The bulk 
elementary excitations, created by the helium atom 
beams in the liquid, are experimentally observed. In 
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addition, in the second energy zone in figure 2, the 
energy of a free 4He-atom Eat crosses the 
corresponding BEEs’ energy in the second energy zone 
(the energy of the second non-dispersive Zakharenko 
wave) that means they could be equal. Figure 2 
supports this. 

Figure 3 represents dependence of the effective 
mass µ* of the bulk elementary excitations of the liquid 
helium-II at low temperatures on the wavenumber k. 
Three points show the effective masses of the bulk 
elementary excitations, which correspond to the non-
dispersive Zakharenko waves, respectively. In the 
energy zone 1 (the phonon branch), the effective mass 
µ* goes to zero at the wavenumber k → 0. The 
maximal value of µ* approaches the free helium-atom 
mass m4 at the maxon-maximum, µ* →  m4, and after it 
goes down to its minimum value at the roton-
minimum, µ*

∆R → 0.15 m4 for the wavenumber k = k∆R 
= 1.925Å–1, and increases again in the third energy 
zone (see figure 3). Now it is possible to give, for 
comparison, the values of µ*

∆R, which were obtained by 
L.D. Landau [4], µ*

∆R = 0.77 m4, and by R.P. Feynman 
and M. Cohen [19], µ*

∆R = 0.4 m4.  
The main purpose of the present theoretical work 

was to show the existence of one corresponding non-
dispersive Zakharenko wave in each energy zone. The 
present theoretical results can be improved in the 
future, if precise experimental data will be available. 
The results of the present paper explain the 
experimental results of the experiments by Wyatt et al. 
[20] in the new way. The differences between 
explanations of the experimental results [20] and the 
same in the present work are summarized in Table 2. It 
is naturally in Acoustics that non-dispersive waves can 
propagate for longer distances than dispersive waves. 

In addition, Wyatt et al. [21] have shown 
dependence of the 3pp-process angle on the BEEs’ 
energy only for the first energy zone. They have 
obtained a maximum value of the angle equaled to θ ~ 
11.2o. The angle θ falls to zero at the critical energy Ec 
~ 8.26K, according to the results of Ref. [21]. 
However, they did not show the dependence θ(E) for 
energies E > Ec in the first energy zone. It is necessary 
to emphasize that their dependence θ(E) is valid only 
qualitatively, but not quantitatively, because their 
group velocity Vg [8] repeats behavior of the Stirling’s 
phase velocity Vph [6, 7]. It is noted that up to the 
present there are no more precise measurements of the 
phase velocity Vph than those carried out by Stirling 
[6,7]. Particularly, both the group velocity by Wyatt et 
al. [8] and the phase velocity by Stirling [6,7] have 
maximum at the same wavenumber. It is obvious that 
Wyatt et al. have used the Stirling’s experimental data, 
in order to calculate the group velocity. It was shown 
in the present paper in figure 2 that the group velocity 
has its minimum at smaller wavenumber than the phase 
velocity. Therefore, they [21] have obtained the critical 

energy Ec(θ = 0) ~ 8.26K, but not Ec ~ 6.2K that must 
be according to Stirling’s maximum phase velocity. 
Then, a correct value of the maximum 3pp-process 
angle could be less than 11.2o relating to energy near 
maximum group velocity that must be verified. It is 
also noted that for energies E > Ec there are negative 
values of the angle θ. However, this matters, because 
cos(θ) is an odd function. All three cases of 3pp-
scattering threshold are also written in classical and 
famous textbook [22], see also Refs. [23,24,25]. A 
correct dependence θ(E) can be reported by the Author 
in the future for all three energy zones.  

It is also noted that the binding energy Eb = 7.15 
K by J. Wilks [17] is taken as the chemical potential in 
all works, see for example Refs. [9,11,26,27]. 
However, the liquid helium-II consists of both 
“maxons” and “rotons” representing free quasi-
particles at both the maxon maximum and the roton 
minimum, respectively, but not of free helium atoms 
4He. Therefore, it is necessary to take a maxon or roton 
energy in its corresponding energy zone as chemical 
potential representing potential energy. The interesting 
thing is in the second energy zone, where there are 
both maxon and roton at the energy zone boundaries.  

The first non-dispersive Zakharenko wave in the 
BEEs first energy zone with energy ~ 6.2 K [6,7] is 
very close to the binding energy Eb = 7.15 K [17] 
representing the helium atom evaporation from the 
liquid surface due to the crossing point between two 
phase velocities Vph

 and cph, where cph is the phase 
velocity of the corresponding surface elementary 
excitations in the first energy zone. This fact gives a 
possibility for the corresponding BEEs in the first 
energy zone to take part in the helium atom 
evaporation at the liquid surface by some interactions 
at the liquid surface. The existence of the crossing 
points in figure 2 between the corresponding BEE 
phase velocity Cph and the helium atom phase velocity 
Vph could mean the existence of a “time-space natural 
window”. One oscillation type representing the 
corresponding BEE in the liquid helium needs this 
window at the liquid-vacuum boundary to pass its 
energy to the other oscillation type, representing the 
helium atom being also a wave, which can propagate in 
vacuum. This could mean that the corresponding 
BEEs, being energy quanta in the liquid helium 
propagating for long distances in the liquid, continue 
their propagation in vacuum already becoming the 
helium atoms, representing energy quanta in vacuum. 
Hence, it is possible to be sure that there are no 
probabilities for the quantum evaporation process, as 
well as for the quantum condensation process. 

Indeed, there is also possibility for helium atom 
condensation in both the maxon maximum and the 
roton minimum, because it is possible to situate the 
coordinate beginning for a free helium atom in both the 
maxon maximum and the roton minimum, where there 
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are trivial wavenumbers for corresponding BEEs. In 
these cases, an atom condensation does not give the 
BEE creation.  This could also mean the BEE creation 
with trivial propagating velocity. It is noted that the 
phonon, negative and positive roton branches were 
originally situated above each other, but not near each 
other as shown in figure 2. It is also noted that all 
BEEs in each branch obey the phonon definition from 
the view point discussed in the present paper, namely, 
they all represent weakly dispersive waves with 
relatively small energies and momenta. Therefore, the 
phonons, negative and positive rotons could be called 
as phonons, thermal and supra-thermal phonons, 
respectively. There is an excellent and classical work 
[28] by Lord Rayleigh, see also Ref. [29], where he has 
discussed the relationship d(kV)/dk representing the 
group velocity coupled with energy. For example, air 
sound waves are weakly dispersive, therefore they can 
propagate for long distances, but not too far. In 
addition, there are works, in which the superfliud 
helium-II is discussed as normal, but only ultra-cold 
liquid. Puchkov et al. have recently highlighted such a 
problem. For this treatment it is possible to emphasize 
that liquid helium-II possesses the thermo-mechanical 
effect [30], which is anomalously great in liquid 
helium-II when compared with other normal liquids. 

5 Conclusions 

The Landau’s theory of superfluidity of the liquid 
helium at absolute zero developed in the 1940’s has 
shown the condition of the superfluidity: absolute 
value of the liquid flow velocity V must be greater than 
the velocity C of an elementary excitation, V > C. He 
has only done comparison with the sound velocity C = 
C0 ~ 250 ms–1, now it is used 238 ms–1, and with the 
roton velocity (this value from Ref. [5] is C = C01 ~ 60 
ms–1) near the roton minimum. Because each BEE of 
liquid helium-II possesses its own velocity Cext, the 
Landau’s condition of the superfluidity could be 
written as V > Cext, and as it was shown in the present 
work, the velocity Cext becomes equal to zero at both 
the maxon maximum and the roton minimum. 
Therefore, the condition V > Cext will even be fulfilled 
for velocity Cph = Cg = 0, because it should be V > 0 for 
the BEEs appearance, and therefore, the liquid could be 
moved by exciting elementary excitations in the liquid 
with zero velocity.  

The energy spectra of the bulk elementary 
excitations consist of three energy zones (the phonon, 
R– – roton and R+ – roton branches). Each energy zone 
contains two modes of dispersive waves (“dispersive 
bulk elementary excitations”), for which the effective 
phase velocity Cph is unequal to the group velocity Cg, 
and one corresponding non-dispersive Zakharenko 
wave, Cph = Cg ≠ 0 and dCph/dk = dCph/dω = 0. At the 

boundaries (at both the maxon-maximum and the 
roton-minimum), which are called the Brillouin zone 
boundaries, between two neighbor energy zones, both 
the effective phase velocity Cph and the group velocity 
Cg become equal to zero. The corresponding non-
dispersive Zakharenko waves can be readily 
experimentally excited both by the helium atom beams, 
“striking” the liquid surface, and by pulsed heaters in 
the liquid. Also, high-energy phonons with energies 
near the maxon energy (13.85K) could be excited by 
the helium atom beams, because at the crossing point 
between the effective phase velocity Cph and the atom 
phase velocity Vph

at there can occur an energy leak 
between these two different types of oscillations.  

The results, obtained the in the present work, 
correlate closely with the experimental results of 
A.F.G. Wyatt et. al. [20]. However, their explanations 
of their experimental results are somewhat incorrect. 
They believe that both the low-energy phonons (~ 1K – 
2K, ~ 238 ms–1) and the high-energy phonons (~ 10K, 
~ 188 ms–1) are experimentally observed. However, the 
present results show that both the first non-dispersive 
Zakharenko wave (the first energy zone or the phonon 
branch, ~ 6.2K, ~ 249 ms–1) and the third non-
dispersive Zakharenko wave (the third energy zone or 
the R+ -roton branch, ~ 15K – 16K, ~ 192 ms–1), 
respectively, are observed.  

The Bose-Einstein condensation (BEC) in the 
liquid helium at the maxon maximum could be such a 
situation when both the effective phase velocity Cph 
and the group velocity Cg become equal to zero that 
could mean propagation of the corresponding BEEs 
with zero velocity. The bulk elementary excitation (the 
roton) near the roton minimum behaves as a free quasi-
particle with the usual dispersion, Cg = 2Cph, for free 
quasi-particles, while the other bulk elementary 
excitation (the maxon which is also studied as the BEC 
[31–34]) near the maxon maximum behaves as a quasi-
particle with unique dispersion, Cph > Cg, according to 
the results of the present paper. It is also mentioned 
that the Landau’s superfluidity theory is a macroscopic 
theory, but not a microscopic one. Also, the BEEs 
effective masses were plotted in dependence on the 
wavenumber k. The effective mass goes up from zero 
at k = 0 to its maximum value ~ m4 at the maxon 
maximum, where m4 is the 4He-atom mass, and it 
decreases afterwards down to its minimum value ~ 
0.15m4 at the roton minimum.  

In the recent work [35], where the new 
interpretation of photoeffect was reported, it was noted 
that free electrons emit the photons, whose energy is 
equal to the binding energy of the electrons in the 
molecules. A binding energy could be coupled with 
crossing points of two phase velocities for two 
different types of oscillations, because an energy leak 
occurs at those points. The binding energy EB = 7.15 K 
by J. Wilks [17] relates to the first energy zone in 
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figure 2, which represents the minimum energy, at 
which there is the helium atom evaporation, and which, 
probably, depends on temperature of the liquid helium. 
Each type of the bulk elementary excitations in the 
corresponding energy zone could possess one 
corresponding binding energy. This could be shown 
and discussed in experimental works, which can be 
reported in the future. 

The non-dispersive Zakharenko waves (the 
Zakharenko condensation or ZC, Cph = Cg ≠ 0) can be 
met in suitable energy zones of different solids, see for 
example in Ref. [36]. Also, “the phenomenon of 
superconductivity is in many ways akin to the 
phenomenon of superfluidity” [2]. In addition, it is 
necessary to mention about the investigations in Ref. 
[37], where phonons are also observed, and the 
dependence of the stress on the shear rate is described 
by a polynomial, similar to the energy spectra of the 
liquid helium. Investigations of both the BEC and the 
ZC in solids/liquids/plasmas, as well as of the 
phenomenon of superconductivity are excluded from 
the present paper and could be done in collaboration 
with different research groups. Probably, the BEC is 
responsible for keeping information about a free quasi-
particle, for example, about the effective mass, while 
the ZC could be a natural product of hybridization 
occurred everywhere over each energy zone. 

The Bose-Einstein condensation with the condition 
Cph = Cg = 0 is met not only in quantum systems at low 
temperatures, but also in different acoustical systems at 
room temperatures, for example, Lamb waves in 
isotropic plates. Both symmetric and anti-symmetric 
modes can exist in plates (see the famous book [38] by 
I.A. Viktorov). The lowest-order anti-symmetric mode 
has linear behavior of the dependence of both the phase 
velocity Vph and the group velocity Vg on the 
wavenumber kh → 0 as Vg = 2Vph, like the behavior of 
a free quasi-particle coming to the BEC (Vph = Vg = 0) 
at kh = 0. 
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Table 1. Characteristics of three non-dispersive Zakharenko waves in bulk superfluid helium–II at low temperatures 

given in comparison with a free helium atom 4He, where k∆R = 1.925Å–1 and E∆R = 8.6K. 

Free 4He atom, 

m4 = 6.667*10–27 [kg] 

Energy 

zone  

k, 

[Ǻ–1] 

|k–k∆R|, 

[Ǻ–1] 

E, [K] |E-E∆R| 

[K] 

Cph=Cg, 

[ms–1] 

µ*, 

10–27 

[kg] Ek
at, [K] Vph

at, [ms–1] Vg
at, [ms–1] 

1 0.325 – 6.17 – 248.6 1.38   0.64   25.7   51.41 

2 1.475 0.45 12.3 3.7 116.6 4.07 13.15 116.7 233.32 

3 2.425 0.50 15.8 7.2 191.3 2.76 35.54 191.8 386.59 

 

 

Table 2. Comparison of different explanations of observed bulk elementary excitations (BEEs). 

Experimentally measured 

BEEs in bulk superfluid 

helium-II at low temperatures 

far from a pulsed heater 

Wyatt et al. explanations of the 

observed BEEs 

The explanations of the observed 

BEEs according to the present 

work 

The bulk elementary excitations 

with velosity ~ 244–249 ms–1 

[20] 

Low-energy phonons with 

energies ~ 1–2K [20] in the 

phonon branch of the BEEs 

energy spectra 

The first non-dispersive 

Zakharenko wave with energy ~ 6-

7K in the phonon branch of the 

BEEs energy spectra 

The bulk elementary excitations 

with velosity ~ 180–190 ms–1 

[20] 

High-energy phonons with 

energies ~ 10K [20] in the 

phonon branch of the BEEs 

energy spectra 

The third non-dispersive 

Zakharenko wave with energy ~ 

15-16K in the positive roton 

branch of the BEEs energy spectra 
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Figure 1. Two types of possible free quasi-particles: (a) the free quasi-particle with positive energy; (b) the free quasi-

particle with negative energy, where there is the situation k → ik and vice versa. The BEC is also shown for k → 0.  
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Figure 2. The dispersion relations. Both the energy Eext of the bulk elementary excitations of the liquid helium-II at low 

temperatures, and the energy Eat of a free 4He-atom are shown by point lines in dependence on the wavenumber k. 

Absolute values of both the effective phase velocity Cph and the group velocity Cg are shown by bold and normal solid 

lines, respectively. The atom phase velocity Vph and group velocity Vg are shown by two straight lines. Two modes of 

dispersive waves in each energy zones are shown. Three black points in the energy zones correspond to the non-

dispersive Zakharenko waves. 

 

Figure 3. The effective masses µ* = Abs[ħ(k – k∆) / Cg], 10–27 kg of the BEEs of the liquid at low temperatures in 

dependence on the wavenumber k. The points in three energy zones correspond to the effective masses for the non-

dispersive Zakharenko waves. 
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