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Abstract:    Acoustic wave propagation in piezoelectric crystals of classes43m and 23 is studied. The crystals Tl3VS4 and 
Tl3TaSe4 (43m)  of the Chalcogenide family and the crystal Bi12TiO20 (23) possess strong piezoelectric effect. Because the surface 
Bleustein-Gulyaev waves cannot exist in piezoelectric cubic crystals, it was concluded that new solutions for shear-horizontal 
surface acoustic waves (SH-SAWs) are found in the monocrystals using different electrical boundary conditions such as electri-
cally “short” and “open” free-surfaces for the unique [101] direction of wave propagation. For the crystal Tl3TaSe4 with coefficient 
of electromechanical coupling (CEMC) Ke

2=e2/(C×g)~1/3, the phase velocity Vph for the new SH-SAWs can be calculated with the 
following formula: Vph=(Va+Vt)/2, where Vt is the speed of bulk SH-wave, Vt=Vt4(1+Ke

2)1/2, Va=aKVt4, aK=2[Ke(1+Ke
2)1/2−Ke

2]1/2, 
and Vt4=(C44/ρ)1/2. It was found that the CEMC K2 evaluation for Tl3TaSe4 gave the value of K2=2(Vf–Vm)/Vf~0.047 (~4.7%), 
where Vf~848 m/s and Vm~828 m/s are the new-SAW velocities for the free and metallized surfaces, respectively. This high value 
of K2(Tl3TaSe4) is significantly greater than K2(Tl3VS4)~3% and about five times that of K2(Bi12TiO20). PACS: 51.40.+p, 62.65.+k, 
68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld. 
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INTRODUCTION 
 

The shear-horizontal surface acoustic waves 
(SH-SAWs) were theoretically distinguished from the 
bulk SH-waves by Bleustein (1968) and Gulyaev 
(1969) simultaneously at the end of the 1960s. The 
surface Bleustein-Gulyaev (BG) waves (Bleustein 
1968; Gulyaev, 1969), possessing a hybridization 
between the mechanical displacement U2 and the 
electric potential φ=U4, can propagate on some sur-
face cuts of the transversely-isotropic crystals of the 
hexagonal and tetragonal classes when propagation 
directions are perpendicular to an odd-order symme-
try axis. It was recently noted by Gulyaev and Hick-
ernell (2005) that SH-SAWs cannot exist in piezo- 
electric cubic crystals. Kessenikh and Shuvalov (1982) 
also discusses that SH-SAWs on electrically open or 
shorted surfaces of piezoelectric crystals of symmetry 
classes 622 and 422 cannot exist if the propagation 
direction is perpendicular to six- or four-fold axis. 

However, when the transversely-isotropic symmetry 
decreases from 622 to 6 or from 422 to 4 classes, the 
surface BG-waves can be found. In addition, Maer-
feld and Tournois (1971) discovered new possibilities 
for shear-horizontal waves propagating along the 
interface between two opposite-polarized similar 
piezoelectric materials as well as between two dis-
similar ones. It is noted that both the surface BG-wave 
and interfacial electroacoustic Maerfeld-Tournois 
(MT) wave may be caused by interfacial crack 
propagation between two dissimilar piezoelectric 
crystals. Note that the interfacial MT-waves, like the 
surface BG-waves, can exist in transversely-isotropic 
piezoelectrics. 

This paper is aimed to report theoretical study of 
surface SH-waves in piezoelectric cubic crystals with 
the strong piezoelectric effect. The Chalcogenide 
family (Tl3VS4 and Tl3TaSe4) (Henaff et al., 1982) are 
soft crystals belonging to the cubic class43m and 
possessing both zero temperature coefficients and 
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strong piezoelectric coupling. In spite of their very 
large potential interest, especially for moderate fre-
quency and large bandwidth, such ternary thallium 
Chalcogenides are not commercially available― 
probably due to their mechanical softness and fabri-
cation difficulties. In contrast to the Chalcogenides, 
the piezoelectric ceramics of the point group sym-
metry 23 [Bi12SiO20 and Bi12GeO20 (Kamenov et al., 
2000; Zakharenko, 2005), and Bi12TiO20 (Kamenov et 
al., 2000)] can be used in piezoelectronics. 

 
 

THEORY 
 

Fig.1 introduces a rectangular coordinate system 
(x1, x2, x3), with the x1Ox3 sagittal plane being per-
pendicular to the lowest odd-order symmetry axis of a 
piezoelectric cubic crystal with the x1-axis showing 
wave propagation in [101] direction. It is necessary to 
write governing equations of linear piezoelasticity. 
Constitutive relations are as follows: 

 

,E
ij ijkl kl ijm mC e Eσ ε= −   (1) 

,m mij ij mn nD e g Eε= +                (2) 
 

in which σij and εij (or εkl) are the stress and strain 
tensors, respectively; Dm and Em (or En) are compo-
nents of the electric displacement and electric field 
(Em=−∂φ/∂xm, where φ is the electric potential); the 
indices i, j, k, l , m and n run from 1 to 3. According to 
the usual Voigt’s notation, Cijkl, eijm and gmn can be 
written as 6×6, 3×6 and 3×3 matrices standing for the 
elasticity, piezoelectricity, and dielectricity tensors, 
respectively. Equilibrium equations are σij,j=0 and 
Di,i=0. It is assumed that the material is free of body 
forces and inertial effects as well as body electric 
charge. 
 
 
 
 
 
 
 
 
 
 
 

The motion equation of an elastic medium is 
written as follows: 

 
2

2 ,i ik
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                           (3) 

 
where ρ and Ui denote the material density and dis-
placement components; t is time. Using Eqs.(1)~(3) 
and φ=U4, one can write the coupled equations of 
motion for a piezoelectric medium as follows: 
 

2 2 2
4

2

2 2
4

,

  0.

i l
ijkl kij

j k j k

k
ijk ij

i j i j

U U U
C e

t x x x x

U Ue g
x x x x

ρ
∂ ∂ ∂

= + ∂ ∂ ∂ ∂ ∂ 


∂ ∂ − = ∂ ∂ ∂ ∂ 

         (4) 

 
Solutions of the homogeneous partial differential 

Eq.(4) of the second order are found in the following 
plane wave view: 0 exp[ j( )],i iU U tω= −kr  where the 

index i runs from 1 to 4; 0
iU  is an initial amplitude; kr 

denotes the scalar multiplication of two vectors; ω is 
the angular frequency. {k1, k2, k3}=k{n1, n2, n3} are 
the components of the wavevector k and {x1, x2, x3} 
are the components of the real space vector r, and {n1, 
n2, n3} are the so-called directional cosines.  

The coupled equations of motion can be readily 
written in the following simplified form, leaving only 
equations for waves with polarization perpendicular 
to the sagittal plane as well as non-zero components 
of the material tensors: 
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In Eq.(5), the mechanical displacement compo-

nent U2 is directed along the x2-axis (Fig.1): 
 

0
2,4 2,4 1 1 3 3 phexp[ j ( )],U U k n x n x V t= + −       (6) 

 
using the phase velocity definition such as Vph=ω/k. 
For piezoelectric cubic crystals, many propagation 
directions being perpendicular to [010] direction can 

Monocrystal 

x1
[101] 

x3 

x2 0 

Shorted surface 

Fig.1  The coordinate system for monocrystal with
the open surface or surface metallization, where the
x1-axis is directed perpendicular to the figure plane



Zakharenko / J Zhejiang Univ Sci A   2007 8(4):669-674 671

exist giving C44=C66 and g11=g33. It is also possible to 
cut a cubic crystal in order to study wave propagation 
in [101] direction with e14=e36=0 and the non-zero 
piezoelectric constants {e16, e34} that is shown in 
Eq.(5). 

Substituting the mechanical displacement U2 
and electrical potential φ=U4 of Eq.(6) into Eq.(5), the 
equations of motion can be readily written in the 
well-known tensor form, using corresponding com- 
ponents of the modified Green-Christoffel tensor: 

2
22 44 3(1 ),GL C n= + 2

24 42 16 34 3 ,GL GL e e n= = +  and 
2

44 11 3(1 )GL g n= − +  with n3=k3/k. That gives the fol-
lowing system of two homogeneous equations: 

 
2 0

22 44 ph t4 24 2
0

42 44

( / )
0.

GL C V V GL U
GL GL ϕ

  −
=  

  
     (7) 

 
In Eq.(7), the directional cosines are defined as 

follows: n1≡1, n2≡0 and n3=n3. Equaling to zero the 
matrix determinant in Eq.(7), the suitable phase ve-
locity Vph satisfying boundary conditions discussed in 
the next section and four polynomial roots n3

(p)(Vph), 
as well as the functions U2

0(Vph) and φ0(Vph) can be 
found. For example, the functions can be taken in the 
following form: φ0=GL42 and 0

2 44 .U GL= −  

Substituting 2
3 3(1 )m n= +  in Eq.(7) and using 

the piezoelectric constants e16=−e34 for [101] direc-
tion, the following polynomial can be introduced 
from Eq.(7): 

 
2 2 2
e 3 3 e(1 ) 4 0,K m Bm K+ − + =               (8) 

with  2 2
ph t4 e( / ) 4 ,B V V K= +                     

 
where Ke

2 is the so-called static coefficient of the 
electromechanical coupling (CEMC), 2 2

e 16 /K e=  
(C44g11). Note that the speed Vt of the bulk SH-wave 
is: 
 

2 1/ 2
t t4 e(1 ) .V V K= +               (9) 

 
Two roots of Eq.(8) are as follows: 
 

2 2 2
e e(1,2)

3 2
e

16 (1 )
,

2(1 )
B B K K

m
K

− ± − +
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+
         (10) 

giving four polynomial roots of Eq.(7) representing 
eigenvalues: 
 

(1,2,3,4) (1,2)
3 31 .n m= ± − +               (11) 

 
Note that for each eigenvalue n3 there is the so-called 
eigenvector {U2

0, φ0}.  
Further analyzing the roots for [101] propagation 

direction in Eqs.(10) and (11), it can be found that all 
complex roots will be calculated when the expression 
under square root sign in Eq.(10) is negative. That 
fulfills for velocities Vph being less than some velocity 
Va obtained solving the following equation B2− 
16Ke

2(1+Ke
2)=0 and defined by the following for-

mula: 
 

t4a KV a V=  with 2 2
e e e2 1 .Ka K K K= + −    (12) 

 
It is clearly seen in Eq.(12) that the factor aK is a 

function of the CEMC Ke
2 together with the other 

function f(Ke
2)=(1+Ke

2)1/2 from Eq.(9). The function 
aK(Ke

2=K0
2=1/3) approaches the function f(Ke

2)= 
(1+Ke

2)1/2 giving the following equality Va=Vt, and 
only complex polynomial roots can exist for Vph<Va. 
The CEMC K0

2=1/3 is readily found by substituting 
the velocity Vt from Eq.(9) to replace the phase ve-
locity Vph in equation B2−16Ke

2(1+Ke
2)=0. Note that 

for Ke
2<K0

2 there are all imaginary roots for Vph>Va, 
but a giant Ke

2>K0
2 gives real roots for Vph>Va. It is 

also noted that only complex/imaginary roots with 
negative imaginary parts are chosen in order to have 
wave damping towards depth of a crystal corre-
sponding to negative values of the x3-axis shown in 
Fig.1. Probably, surface waves cannot be found in the 
cubic crystals with a giant Ke

2>1/3 in the Vph-range: 
Va<Vph<Vt. Here there are two real roots for Vph>Vt. It 
is thought that a great Ke

2 can be observed in complex 
compounds, as well as in simple materials including 
piezoelectric cubic crystals. For instance, the classic 
ferroelectric PbTiO3 has been known to have a single 
ferroelectric tetragonal (T) to paraelectric cubic phase 
transition with increased temperature or pressure. Wu 
and Cohen (2005) studying PbTiO3 discussed an un-
expected tetragonal-to-monoclinic-to-rhombohedral- 
to-cubic phase transition sequence induced by hy-
drostatic pressure and a morphotropic phase boundary 
in a pure compound.  
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BOUNDARY CONDITIONS FOR SH-WAVES  
 

Boundary conditions for studying SH-waves in 
monocrystals are based on several requirements 
which must be satisfied. There is the single me-
chanical boundary condition for the normal compo-
nent of the stress tensor σ32 such as σ32=0 at x3=0, 
where  

 
( ) ( ) ( ) ( ) ( )

32 44 3 2 34 3 4
1,2

[ ].p p p p p

p
F C k U e k Uσ

=

= +∑     (13) 

 
Also, there are two electrical boundary conditions: 
continuity of the normal component D3 of the elec-
trical displacements at x3=0 being the interface be-
tween vacuum (D3

f) and the crystal surface, where  
 

( ) ( ) ( ) ( ) ( )
3 34 3 2 33 3 4

1,2

f (0) f
3 0 1 0

[ ],
 

j ,

p p p p p

p
D F e k U g k U
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= − 

= − 

∑
   (14) 

 
and continuity of the electrical potential U4=φ at x3=0 
(φ=φ f), where  
 

( ) ( )

1,2

p p

p
Fφ φ

=

= ∑  and  f (0) f
0 .Fφ φ=         (15) 

 
Therefore, the boundary conditions determinant 

(BCD) for the case of free surface can be readily 
written from matrix view as shown in Eq.(16). 

The BCD for the metallized surface can be also 
written from matrix view as shown in Eq.(17). 

The complete mechanical displacement U2
Σ and 

electrical potential φΣ=U4
Σ are written in the plane 

wave view as follows: 
 

( ) 0( ) ( )
2,4 2,4 1 1 3 3 ph

1,2
exp[ j ( )].p p p

p
U F U k n x n x V tΣ

=

= + −∑ (18) 

 
The weight functions F(1) and F(2) are readily found 
from Eq.(16), which can give the same eigenvectors 
 
 
 
 
 
 
 

{U2
0(1), φ0(1)} and {U2

0(2), φ0(2)} for two equal eigen-
values n3

(1)=n3
(2) and hence, F(1)=−F(2). It is obvious 

that for this case the weight factors F(1)=−F(2) will 
zero the complete mechanical displacement U2

Σ and 
electrical potential φΣ in Eqs.(16) and (17) giving 
“latent” characteristics in Eq.(18). On the other hand, 
unequal eigenvalues n3

(1) and n3
(2) give different ei-

genvectors {U2
0(1), φ0(1)} and {U2

0(2), φ0(2)}. Con-
cerning experimental measurements of surface 
acoustic waves, it is also thought that some elements 
of crystals symmetry (screw axis or glide reflection) 
must be broken near the surface. The same relates to 
simple reflections and axis if the surface restricts the 
crystal in such a way that it breaks some simple ele-
ments of the crystals class group. Thus, to experi-
mentally distinguish different types of surface waves 
is difficult and not unequivocal. 
 
 
RESULTS AND DISCUSSIONS 
 

Calculations of the phase velocity Vph, the ve-
locities Va, Vt4 and Vt, as well as the CEMC Ke

2 were 
carried out for different piezoelectric cubic crystals: 
Chalcogenides Tl3VS4 and Tl3TaSe4 (cubic, 
class43m), and Bismuth Titanate Bi12TiO20 (cubic, 
class 23). For the ternary thallium Chalcogenide 
Tl3TaSe4, material constants for [100] direction are as 
follows: ρ=7280 [kg/m3], C44=0.41×1010 [N/m2], 
e14=0.32 [C/m2], and |g11|/|g0|=10.1. g0 is the dielectric 
constant of vacuum, g0=0.08854×10−10 [F/m]. Note 
that difference between [101] and [100] directions are 
confined in the piezoelectric constants: |e16|[101]= 
|e14|[100]. The same material constants for Tl3VS4 are: 
ρ=6140 [kg/m3], C44=0.47×1010 [N/m2], e14=0.55 
[C/m2], and |g11|/|g0|=34.8. These material constants 
give great CEMCs Ke

2(Tl3TaSe4)=(e16)2/(C44g11) 
~0.2793 and Ke

2(Tl3VS4)~0.2089. All the wave 
characteristics were calculated with an accuracy of 
about 1 µm/s that is useful and allows distinguishing 
Vph-solutions when they are close to each other. The 
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wave characteristics for Tl3TaSe4 are as follows: 
Vt4~750.4577358 m/s, Vt~848.8104580 m/s, and 
Va~846.9869546 m/s. The speed Vt of the bulk 
SH-wave is slower than 1000 m/s and the value of Va 
is close to Vt because Ke

2 is close to K0
2=1/3. Ac-

cording to the recent publication (Gulyaev and 
Hickernell, 2005), SH-SAWs (for instance, the sur-
face BG-waves) cannot exist in piezoelectric cubic 
crystals. Hence, any found Vph-solutions below the 
speed Vt for the boundary conditions’ determinants 
(BCDs) in Eqs.(16) and (17), except in the case of Va 
with two equal roots, will represent new-wave solu-
tions of SAWs. The Vph-solutions are found when 
values of the BCDs fall to zero. Indeed, new SAWs 
can be found in cubic crystals with strong piezoelec-
tric effect for electrical boundary conditions of both 
free and metallized surfaces. For the strongest piezo-
electrics Tl3TaSe4 of the treated cubic crystals, the 
existence possibility of new SAWs for both electrical 
boundary conditions is obvious that allows evaluation 
of the coefficient of electromechanical coupling: 

 
2

new new, new2( ) / ,mK V V V= −   (19) 
 

where Vnew and Vnew,m are the velocities of new SAWs 
for the free and metallized surfaces, respectively. The 
velocities Vnew~848.125556 m/s and Vnew,m~ 
828.335498 m/s for the crystal Tl3TaSe4 give K2~ 
0.04667, and the behavior of corresponding BCDs is 
shown in Fig.2. Note that here the new-SAW velocity 
Vnew can be approximated with Vnew=(Vt+Va)/2, be-
cause the value of Vnew is situated between the values 
of Vt and Va.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Vph-solutions for both the BCDs are shown 
in Fig.3 for the other strong piezoelectrics Tl3VS4 
with the value of Ke

2 being significantly less than the 
one for Tl3TaSe4. The characteristics of Tl3VS4 are: 
Vt4~874.9127458 m/s, Vt~961.9607843 m/s, and Va~ 
948.1841318 m/s. The calculated velocities of the 
new SAWs are Vnew~961.927246 m/s and Vnew,m~ 
947.491302 m/s giving about 1.5 times decrease in 
the CEMC, K2(Tl3VS4)~0.030, calculated with 
Eq.(19). Here the velocity Vnew,m is still significantly 
less than Vt and is about Va. On the other hand, it is 
clearly seen from the above written values of Vnew and 
Vt that they are close to each other for the large value 
of Ke

2(Tl3VS4)~0.2089, which is about two times 
greater than that for the cubic crystal Bi12TiO20: 
Ke

2(Bi12TiO20)~0.1118. That is true for the other 
crystals of class 23, Bi12SiO20 and Bi12GeO20, which 
possess smaller values of Ke

2(class 23)~0.10 to 0.15 
(Zakharenko, 2005). Fig.4 shows the BCD behavior 
for the cubic crystal Bi12TiO20, using the following 
material constants taken from (Kamenov et al., 2000): 
ρ=11200 [kg/m3], C44=2.60×1010 [N/m2], e14=1.10 
[C/m2], and g11=4.16138×10–10 [F/m]. The Bi12TiO20 
material constants result in relatively high velocities 
Vt4~1523.62350 m/s, Vt~1606.562692 m/s, and Va~ 
1495.282953 m/s being about two times greater than 
those for the Chalcogenides. The velocity Vnew~ 
1606.556882 m/s here is very close to the speed Vt, 
but can still be distinguished in the calculations using 
the set accuracy of about 1 µm/s. The velocity Vnew,m~ 
1598.414906 m/s is significantly less than Vt, but 
greater than Va, which means that Vnew,m can also 
reach Vt. Using the calculated velocities Vnew and  
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Fig.2  The dependence of the boundary conditions de-
terminants (BCD) on the phase velocity Vph for [101]-
direction of wave propagation in the cubic crystal
Tl3TaSe4 with the metallized surface. The insertion shows
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Vnew,m, the evaluated value of the K2 from Eq.(19) is as 
high as K2(Bi12TiO20)~0.010 that is only 1%. It is 
thought that the bulk SH-wave with the speed Vt is 
unstable and can be readily treated as the SH-SAWs 
for the weaker piezoelectrics such as the crystals of 
class 23. Indeed, the penetration depth here can reach 
macroscopic distances towards the crystal depth.  
 
 
CONCLUSION 
 

In this report of theoretical work, the phase ve-
locity Vph and coefficient of electromechanical cou-
pling K2 were calculated for new SH-SAWs propa-
gating in [101] direction on the surface of piezoelec-
tric cubic crystals, in which the surface Bleustein- 
Gulyaev waves cannot propagate. For the Chalco-
genide Tl3TaSe4 with the greatest CEMC Ke

2~1/3, the 
velocity Vnew for the new SH-SAWs is significantly 
less than the speed Vt of the bulk SH-waves, 
VD=Vnew−Vt~0.7 m/s for the free surface, while the 
difference VD for the crystal Tl3VS4 with the CEMC 
Ke

2~1/5 is VD~0.03 m/s. For the Bismuth Titanate 
possessing the smallest value of the CEMC 
Ke

2(Bi12TiO20)~1/10 concerning the studied crystals, 
the difference VD is very small and equals to ~0.007 
m/s which already makes difficulties for numerically 
finding the phase velocity Vnew of new SH-SAWs, as  
 

 
 
 
 

well as for distinguishing it from the bulk SH-wave 
propagating with the speed Vt. Using the surface 
metallization, the corresponding differences VD for 
the studied crystals are as follows: VD(Tl3TaSe4)~20.5 
m/s (Vnew,m<<Va), VD(Tl3VS4)~14.5 m/s with Vnew,m~ 
Va and VD(Bi12TiO20)~8 m/s (Vnew,m>>Va). Also, the 
additional solutions for the Va, which is significantly 
less than the speed Vt for weakly-piezoelectric cubic 
crystals, give latent displacements or zero ones. 
However, it is thought that different surface pertur-
bations can result in visualization of the displace-
ments that must be experimentally verified for sensor 
application.  
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Fig.4  The dependence of the boundary conditions
determinants (BCD) on the phase velocity Vph for [101]-
direction of wave propagation in Bi12TiO20 with the
metallized surface. The insertion shows the Re(det)
solution for the open surface 


